Project Docs
  • 👋Welcome to End2End Data Science Project Documentation
  • About us
    • 💡Who we are
  • Project Guides
    • 📪Project Pipeline Overview
    • 📎Understanding Projects
  • Fundamentals
    • 🛠️Getting started
      • 💻Step 1: Github
        • Working with Git & Github
          • Setting up your repository & project
          • Git Branching
          • Push & Pull
          • Pull Request
        • Resources
        • Exercise
      • 💻Step 2: Python Setup
      • 💻Step 3: Conda Environment
        • Working with Conda Environment
        • Resources
      • 💻Step 4: MySQL, Postgres & Oracle DB
        • Quick review on SQL
        • Exercises (Under development)
      • 💻Step 5: Project Setup
      • 💻Step 6: AWS & GCP
        • Automation
      • 📉Step 7: Final Presentation
      • 🚀Step 8: Docker
        • Creating Docker Image
        • Useful Docker commands
  • 📔Interesting articles
    • Data Engineering
    • Data Science
    • ML & MLOps
  • 📔Resources
Powered by GitBook
On this page
  • Step 1: Create a new project folder & Conda environment
  • Step 2: Create a new GitHub repo for the project remote & local
  • Step 3: Create a new branch & start coding
  • Step 4: Create PR & merge to production once approved
  1. Fundamentals
  2. Getting started

Step 5: Project Setup

PreviousExercises (Under development)NextStep 6: AWS & GCP

Last updated 1 year ago

Step 1: Create a new project folder & Conda environment

Follow step-by-step instructions from , and return to this page for further steps.

Step 2: Create a new GitHub repo for the project remote & local

Follow step-by-step instructions from , and return to this page for further steps.

Step 3: Create a new branch & start coding

$ git checkout -b <new-branch-name>

Step 4: Create PR & merge to production once approved

Follow step-by-step instructions from

🛠️
💻
here
here
here